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Abstract

Background: Osteosarcoma is a primary malignant bone tumor commonly found in children and young 
adults. The prognosis of patients with metastatic osteosarcoma is very poor. Different studies have shown 
that immune infiltration is associated with osteosarcoma metastasis. However, the cellular composition of 
immune infiltrates may vary slightly in osteosarcoma metastases. Recent studies have reported that abnormal 
alternative splicing regulation is related to the occurrence and development of cancer.

Materials and methods: In this study, we performed a genome-wide analysis of the regulatory network of 
immune infiltration-related regulated alternative splicing (RAS) and RNA-binding proteins (RBP) regulators in 
metastatic osteosarcoma. Analysis of the GSE87624 dataset identified 547 differentially regulated alternative 
splicing events (RASEs) and 219 differentially expressed RNA binding proteins (DERBPs) (FC≥2 or FC≤0.5, 
FDR≤0.05). The differential RASE genes were enriched in cell cycle, cell division, DNA repair, RNA splicing, and 
other pathways. 

Results: Among the 219 DERBPs, 96 genes were up-regulated and 123 genes were down-regulated, and 
the down-regulated genes were mainly enriched in cell adhesion and extracellular matrix-related pathways. 
Finally, we obtained seven DERBPs and corresponding alternative splicing events associated with immune 
cells and explored the important role of the genome-wide RBP-RASE-immune microenvironment regulatory 
network in the proliferation and metastasis of osteosarcoma.

Conclusions: In this paper, we examined the immune infiltration-related RAS and RNA-binding proteins 
(RBP) regulation network in metastatic osteosarcoma on a genome-wide scale. That has important implications 
for developing effective treatment strategies and improving outcomes for osteosarcoma patients.

Keywords: Osteosarcoma; Genome-wide analysis; RNA-binding proteins; Alternative splicing; Immune 
infiltration.
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Introduction

Osteosarcoma (OS) is a malignant bone tumor commonly 
found in adolescents and young adults. It originates from primi-
tive transformed cells, characterized by aggressive local growth 
and high metastases [1]. Although surgery combined with che-
motherapy has greatly improved the prognosis of patients with 
osteosarcoma, the prognosis of metastatic or recurrent osteosar-
coma remains suboptimal [2]. The prognosis is particularly poor 
in patients with metastatic osteosarcoma, whose 5-year survival 
rate is <30% [3,4]. In spite of several attempts over the past 20+ 
years using various chemotherapy regimens for osteosarcoma, 
survival rates have remained relatively stable, and there hasn’t 
been an effective targeted treatment yet [5]. Given this, eluci-
dating the molecular mechanisms of osteosarcoma occurrence, 
proliferation, metastasis, and recurrence are of great significance 
for developing effective therapeutic strategies and improving pro-
gnosis.

In recent years, growing interest has been shown in the pa-
thophysiology and genetics of osteosarcoma, and various geno-
mic studies employing Whole-Genome Sequencing (WGS) and/
or Whole-Exome Sequencing (WES) have been published. Genetic 
heterogeneity, multiple chromosomal abnormalities, mutations, 
and the most up- and down-regulated genes can all be discovered 
by genome analysis [5,6]. Moreover, recent studies have sugges-
ted a connection between abnormal alternative splicing regula-
tion and the occurrence or progression of cancer. However, there 
is no research on the RBP-AS regulatory network and its possible 
functions from the genome-wide level.

In this paper, we examined the immune infiltration-related RAS 
and RNA-binding proteins (RBP) regulation network in metastatic 
osteosarcoma on a genome-wide scale. 

Materials and Methods

Data Collection

Download the published osteosarcoma transcriptome expres-
sion data GSE87624 from the GEO database, the data set cell 
samples are derived from patients Osteosarcoma tissue, trans-
criptome data obtained by high-throughput sequencing of 44 
osteosarcoma patients and 3 control bone tissues. Based on the 
transcriptome data of primary and metastatic osteosarcomas, 
differential expression analysis of RBPs and RASEs was carried 
out, and the differentially expressed RBP genes and RASEs were 
identified. Co-expression analysis of differentially expressed RBP 
and RASE was performed to study the RBP-AS regulatory network 
in this disease. 44 osteosarcoma patient samples were determi-
ned to compare immune cell types and discover differentially ex-
pressed RBPs and alternative splicing events in 23 primary and 9 
metastatic osteosarcoma tissues. RBP-related genes were collec-
ted in the relevant literature [7-10].

Retrieval and process of public data

The public sequence data files were obtained from the Se-
quence Read Archive (SRA). Using the NCBI SRA Tool fastq-dump, 
SRA Run files were converted to fastq format. Using a FASTX-Tool-
kit, the raw readings were cleaned of low-quality bases. The clean 
readings were then assessed using FastQC.

Reads alignment and differentially expressed gene (DEG) ana-
lysis

HISAT2 used clean reads to align to the mouse genome [11]. 
Ultimately, read count and fragments per kilobase of exon per 
million fragments mapped (FPKM) for each gene were evaluated 
using uniquely mapped reads. Using FPKM, the expression levels 
of the genes were assessed. We choose the DEseq2 software to 
gene differential expression analysis. In order to account for the 
variation in Library depth, DEseq2 will model the original reads 
and utilize the scaling factor. Then, in order to model the read 
count, DEseq2 estimates the gene dispersion and decreases these 
estimates to get estimates of dispersion that are more accurate. 
Finally, DEseq2 matches the model of a negative binomial distribu-
tion, and the Wald test or likelihood ratio test is used to evaluate 
the hypothesis. The differentially expressed between two or more 
samples can be examined using DEseq2. According to fold change 
(FC) and false discovery rate (FDR), the results of the study could 
well be utilized to assess if the gene is expressed differently. There 
are two critical factors: (1) FC: the ratio of the absolute change in 
expression; (2) FDR: The following were the significant differential 
expression requirements: FDR ≤ 0.05 and FC ≥ 2 or ≤ 0.5.

Alternative splicing analysis

Using the ABL as a pipeline as previously described, the Alter-
native Splicing Events (ASEs) and regulated alternative splicing 
events (RASEs) between the samples were identified and mea-
sured [12,13]. In summary, splice junction readings were used by 
ABL to detect 10 different forms of ASEs. Using the alternatives 
reads and models reads of the samples as raw data, Fisher’s exact 
test was chosen to establish statistical significance for sample pair 
comparison. We determined the RASE ratio, which is the changed 
ratio of alternatively spliced reads and constitutively spliced reads 
between comparable samples. The threshold for RASEs detection 
was established at the RASE ratio ≥ 0.2 and the p-value ≤ 0.05. 
To assess the significance of the ratio alteration of AS events, the 
Student’s t-test for repeated comparison was used. Non-intron re-
tention (NIR) RASEs were defined as events that were significant 
at a P-value cutoff of 0.05.

Functional enrichment analysis

Using the KOBAS 2.0 server, Gene Ontology (GO) keywords 
and KEGG pathways were found to classify DEGs into functional 
categories [14]. The enrichment of each term was determined 
by using hypergeometric test and the Benjamini-Hochberg FDR 
controlling procedure. The study of functional enrichment of the 
sets of selected genes also included Reactome pathway profiling.

Immune cell infiltration analysis tool

For the analysis of immune cell infiltration, we used the IOBR 
package in the R package, which was published in frontiers in im-
munology on July 2, 2021 (IF=7.561). ESTIMATE, CIBERSORT, xCell, 
TIMER, IPS, MCPcounter, EPIC, and quantTIseq are 8 published 
methods for decoding tumor microenvironment (TME) contex-
ture that are combined in IOBR. Additionally, 255 published signa-
ture genes set including the tertiary lymphoid structure, tumor 
microenvironment, m6A, microsatellite instability exosomes, and 
tumor metabolism were gathered by IOBR. Additionally, IOBR em-
ploys a variety of methods for data analysis, variables transforma-
tion, feature selection, and supports batch survival analysis and 
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even visualization of corresponding result.

Construction of PPI Network

PPI information of all RBP and RASE that were differentially ex-
pressed was downloaded after processing by STRING database. To 
create the PPI network, we used the Cytoscape software (correla-
tion coefficient ≥ 0.6).

Other statistical analysis

Principal component analysis (PCA) was performed by R pac-
kage factoextra to show the clustering of samples with the first 
two components. The next-generation sequencing data and ge-
nomic annotations were visualized in house-script (sogen) after 
normalizing the reads by TPM of each gene in the samples. The 
clustering based on Euclidean distance was performed by using 
the pheatmap package in R. The Student’s t-test was employed to 
compare the two groups. 

Results

Analysis of gene expression profile of metastatic and primary 
osteosarcoma (OS)

Transcript data of primary osteosarcoma and metastatic osteo-
sarcoma samples were obtained from the dataset GSE87624. A 
hierarchical clustering heatmap was used to show a correlation 
between metastatic and primary sample based on all expression 
genes’ FPKM value (Figure 1A). To find the differentially expressed 
genes between primary and metastatic osteosarcoma, we used 
differential analysis with the R package limma (FDR ≤ 0.05 and FC≥ 
2 or ≤ 0.5). The volcano plot showed that 96 genes were up-regu-
lated and 123 genes were down-regulated in metastatic osteo-
sarcoma tissue compared with primary osteosarcoma (Figure 1B). 
PCA of all differentially expressed genes in primary and metastatic 
osteosarcoma was performed using the R software package fac-
toextra, which clearly showed the results (Figure 1C). For gene 
function enrichment analysis, we applied the GO annotations of 
the genes in the R package as the background to map the genes 
to the background set and enriched them using KOBAS 2.0 server 
analysis. The results of the gene set enrichment were then obtai-
ned. The GO functional enrichment analysis showed that the up-
regulated genes were primarily enriched in the development and 
cell differentiation-related pathway of multicellular organisms, 
and the down- genes were mainly enriched in the cell adhesion 
and extracellular matrix-related pathways (Figure 1D,E). 

In addition, the most recent KEGG Pathway gene annotation 
was obtained via the KEGG rest API. The same method was adop-
ted to obtain KEGG functional enrichment analysis, which showed 
that up-regulated genes were primarily enriched in Lysosomal 
and Vascular smooth muscle contraction pathways, while down-
regulated genes were mainly enriched in Mucin type O-glycan 
biosynthesis and Neuroactive ligand-receptor interaction pa-
thways (Figure 1F,G).

Abnormal alternative splicing patterns in metastatic OS com-
pared with primary OS

First, we used ABL to calculate the ratio of changes in alter-
nately and constitutively spliced read between the sample, de-
termined as the RASE ratio. RASE ratios ≥0.2 and p-values ≤0.05 
were set as thresholds for the detection of RASEs, and significant 

events with p-values ≤0.05 were considered non-intron-retaining 
regulated alternative splicing events (NIR RASEs). On this basis, 
we obtained all RASEs in metastatic and primary samples, as 
well as 547 NIR RASs that significantly differed between the two 
samples (Figure 2A,B). PCA of these NIR RASs was also performed, 
clearly distinguishing the two samples (Figure 1C). A hierarchical 
clustering heatmap of RAS was drawn based on splicing ratio, and 
differences between metastatic and primary osteosarcoma were 
clearly identified (Figure 1D). Finally, we used GO and KEGG func-
tional enrichment analysis to enrich the genes corresponding to 
these 547 differential RASEs. GO functional enrichment analysis 
showed that these genes were mainly enriched in Cell cycle, Cell 
division, Protein transport, DNA repair, RNA splicing and other 
pathway (Figure 2E). The KEGG functional enrichment analysis in-
dicated that it was mainly enriched in Autophagy, Base excision 
repair, Amino acid degradation, and Bacterial infection pathways 
(Figure 2F).

Dynamic changes of ASE associated with immune microenvi-
ronment regulation in OS

Based on the expression profiles of metastatic and primary 
samples, the R software package IOBR package was used to select 
the CIBERSORT calculation method and obtain immune infiltra-
ting cell scores for the two groups of samples. Boxplots were used 
to show the differences in immune cell types between the two 
samples (Figure 3A). Significant increases in T follicular helper cell, 
activated memory CD4 T cell, and plasma cell were seen in metas-
tatic osteosarcoma (Figure 3D). This result was slightly different 
from the recent results reported by Yang et al. who showed in-
creased numbers of natural killer cells CD56, B cells naive, macro-
phages M1, and neutrophils in non-metastatic osteosarcoma tis-
sue, while in non-metastatic osteosarcoma tissue macrophages 
M2 levels were higher in metastatic tissues [15]. However, this is 
consistent with the findings on osteosarcoma lung metastasis re-
ported by Chen et al. [16]. who argued that plasma cells, activated 
memory CD4 T cells, T cells CD8, and Tregs were the key determi-
nants of osteosarcoma tissue metastasis. PCA based on fractions 
of different immune cells of all expressed genes in the two groups 
of samples could also distinguish between the two (Figure 3B). In 
addition, the proportion of immune cells in metastatic compared 
to primary osteosarcoma showed a decreasing trend (Figure 3C). 
The co-expression of RAS and 20 immune cell types was analyzed, 
and the pairs with a correlation coefficient ≥ 0.6 were selected. 
The regulated alternative splicing genes (RASG) - PDE4DIP, BSCL2, 
UBE2I, PLD3, CBWD5, and KIAA1841 were found to be significant-
ly associated with plasma cells. Naive B cells were significantly as-
sociated with BSCL2, DPY19L3, BBC3, and KIAA1814. T cells CD8 
were significantly associated with ZNF410, DPY19L3, and BBC3. 
Both activated CD4 memory T cells and Tregs were significantly 
associated with CCNL1. T follicular helper cells were significantly 
associated with BSCL2 and DPY19L3 (Figure 3E). Finally, we found 
the fractions of different immune cells estimated by Cibersort in 
each sample. There were a large number of plasma cells, T cells 
CD4, and T cells CD8 in the metastatic osteosarcoma tissue on the 
left side of the figure (Figure 3F). In conclusion, we found that af-
ter the metastasis of osteosarcoma, the immune infiltrating cells 
were mainly divided into plasma cell, CD8 T cell, activated me-
mory CD4 T cell and Tregs.
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Differential RBP regulates alternative splicing events related 
to immune cells.

In order to obtain differentially expressed RNA-binding protein 
(DERBP) genes between metastatic and primary samples, we used 
the Venn diagram to intersect 219 DEGs with 2494 RBP genes (ob-
tained from ENCORI database) and finally obtained the top7 DER-
BP genes (Figure 4A). Next, we compared the expression of these 
DERBP genes in metastatic and primary osteosarcoma by boxplot, 
finding that the expressions of CRYAB, FBN1, TRIM61, and RBM20 
were significantly down-regulated in metastatic osteosarcoma 
tissues, while the expressions of FAM184B and WIPF3 were signi-
ficantly up-regulated in metastatic osteosarcoma tissues (Figure 
4B). In order to understand the relationship between DERBP, 
RASE, RASG, and RAS-related immune cells, we used a Network 
diagram, which revealed that five DERBPs (WIPF3, FAM184B, 
RBM20, TRIM61, CRYAB) were associated with RAS-related im-
mune cells (Figure 4C). The boxplot of the RAS splicing ratio asso-
ciated with immune cells showed that the splicing ratio of ZNF410 
was significantly down-regulated in metastatic osteosarcoma tis-
sues, and the splicing ratio of BSCL2, CBWD5, and KIAA1841 was 
significantly up-regulated in metastatic cancer tissues (Figure 4D). 
Among them, the alternative splicing event ZNF410 regulated by 
CYRAB has negatively correlated with T cells CD4 memory activa-
ted, and the alternative splicing event BSCL2 regulated by WIPF3 
was positively correlated with plasma cells. Finally, we found that 
the read distribution of NIR 17199 BSCL2 and NIR 31762 ZNF410 
alternative splicing events were related to immune cells (Figure 
4E-F). In conclusion, we speculate that CRYAB and WIPF3 may af-

Figure 1: Analysis of gene expression profiles of metastatic and prima-
ry osteosarcoma (OS). (A) Hierarchical clustering heatmap showing 
a correlation between metastatic and primary sample based on the 
FPKM values of all expressed genes. (B) Volcano plots represent all 
DEGs between metastatic and primary samples. (C) PCA based on 
FPKM value of all DEG. (D, E) The highest enriched GO biological pro-
cess findings of the up- and down-regulated genes are displayed in a 
bar plot. (F, G) The most enriched KEGG pathway findings for up- or 
down-regulated DEGs are displayed in a bar plot.

Figure 2: Abnormal alternative splicing patterns in metastatic OS 
compared with the primary OS. (A) Bar plot displaying the number 
of all detected ASEs from metastatic and primary samples. X-axis: All 
ASE numbers. Y-axis: the different types of AS events. (B) Bar plot dis-
playing the number of all significant RAS between metastatic and pri-
mary samples. (C) PCA based on the splicing ratio of RAS. The confi-
dence ellipse is the ellipse for each group. (D) Hierarchical clustering 
heatmap of RAS based on splicing ratio. (E, F) Bar plot displaying the 
most enriched GO/KEGG pathways result of the RAS.

fect the composition of immune cells by regulating gene alterna-
tive splicing, thereby promoting the metastasis of osteosarcoma 
tissue.

RBPs are protein that bind to RNAs through globular RNA-Bin-
ding Domains (RBDs), thereby altering the function or fates of the 
bound RNAs [17]. RBPs can recognize special RNA-binding do-
mains to interact with RNA and participate in various post-trans-
criptional regulatory processes, such as RNA splicing, transporta-
tion, polyadenylation, intracellular localization, translation, and 
degradation [18]. RNA alternative splicing refers to the process 
of transcribed precursor mRNA by removing introns and retaining 
exons to form mature mRNA, which is a vital step in regulating 
post-transcriptional gene expression. As regulation has an affect 
on more over 90% of human genes, including genes related with 
tumors [19].

The fundamental mechanism of RBP expression and its pos-
sible roles are revealed, which helps in the discovery of novel the-
rapeutic targets as well as innovative methods or ideas. DDX24, 
DDX21, and IGF2BP2 in RBPs are associated with the prognosis 
of osteosarcoma, and WARS may have an important role in the 
immune infiltration of osteosarcoma [20]. PUM2 expression was 
shown to be low in osteosarcoma patients, and Hu et al. found 
that increasing PUM2 expression might inhibit osteosarcoma cells 
from migrating and progressing [21]. Moreover, IGF2BP1 expres-
sion is up-regulated in osteosarcoma tissues and seems closely 
related to the poor prognosis of patients with osteosarcoma 
[22]. Pan et al. found that the expression of HuR is significantly 
increased in osteosarcoma tissues, and inhibition of HuR could in-
hibit the viability, EMT, and promote apoptosis of osteosarcoma 
cells [23]. A recent study suggested PTBP1 as an oncogene in va-
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Figure 3: Dynamic changes of alternative splicing events associated 
with immune microenvironment regulation in metastatic and prima-
ry OS. (A) Boxplot showing the immune cell fractions between me-
tastatic and primary samples. (B) PCA based on Fractions of different 
cells of all expressed genes. (C) Metastatic relative to primary group 
rank-ordered based on decreasing values of the relative frequency 
ratio at metastatic versus primary. (D) Boxplot showing cell fraction 
of plasma cells, activated memory CD4 T cells, and T follicular helper 
cell types. (E) The co-expression of RAS and 20 immune cell types 
was analyzed. (F) Fractions of different immune cells were estimated 
by Cibersort in each sample.

Figure 4: Differential RBP regulates alternative splicing events related 
to immune cells. (A) Venn diagram displaying the overlap of RBP and 
DEG. (B) Boxplot showing the expression of 7 DERBPs. (C) Differen-
tial RBP and Ras were co-expressed, and the pairs with a correlation 
coefficient ≥ 0.6 were selected. Network diagram of DERBP regulating 
RAS, blue: DERBP, Brown: RASE, dark blue: RASG, red: RAS related to 
immune cells. (D) Boxplot showing RAS related to immune cells. (E,F) 
The reads distribution shows 17199 BSCL2 and 31762 ZNF410 alter-
native splicing events related to immune cells.

rious cancers [24]. PTBP1 expression was vastly higher in chemo-
therapy-resistant than chemotherapy-sensitive osteosarcoma tis-
sues, while PTBP1 knockdown enhanced the anti-proliferative and 
apoptosis-inducing effects of cisplatin in MG-63 and U2OS. Trans-
criptome sequencing showed that knockdown of PTBP1 could 
up-regulate the expression of copper transporter SLC31A1, and 
immunoprecipitation experiments showed that PTBP1 influences 
the expression level of SLC31A1 by affecting the stability of the 
SLC31A1 mRNA. According to Niu et al. [25], osteosarcoma tis-
sues have higher levels of MSI1 expression than adjacent tissues, 
and MSI1 knockdown in osteosarcoma cells can inhibit cancer cell 
proliferation and tumor formation. MSI1 was able to bind to the 
3'UTR sections of the p21 and p27 mRNAs, according to luciferase 
experiments. RBM10 has long been regarded as a tumor suppres-
sor due to its ability to control the MDM2-p53 negative feedback 
loop, inhibits the expression of apoptosis proteins like Bcl-2 and 
Bax, and promotes the expression of caspase-3 and the produc-

tion of TNF-α, thereby inducing osteosarcoma cell apoptosis and 
inhibits cell proliferation via Notch signaling and the rap1a/Akt/
CREB pathway [26].

Aberrant alternative splicing is prevalent in osteosarcoma, 
and its regulation has an important role in the development of 
osteosarcoma. There are previous reports of aberrant alterna-
tive splicing regulation of some genes. For example, loss or fre-
quent down-regulation of cellular expression of leptin receptor 
overlapping transcripts may be associated with tumor formation. 
Rothzerg et al., [27] analyzed the AS and transcriptional events 
between tumor and normal samples and discovered that up-re-
gulating the expression of IL-6 and TNF-a via overlapping trans-
cription of leptin receptors may influence the occurrence and 
metastasis of OS. SRSF3, a member of the Serine/Arginine-Rich 
(SR) protein family, regulates gene expression of FoxM1, PLK1, 
and CDC25B as well as protein translation, pri-miRNA processing, 
polymerization, polyadenylation, and regulates RNA alternative 
splicing in U2OS osteosarcoma cells [28]. In human osteosar-
coma U2OS cells, Ajiro et al. [29] presented a genomic map of 
SRSF3-regulated RSAE and gene expression, whose major trans-
cripts contain highly conserved RNA motifs, revealing that splicing 
events were mainly associated with cell proliferation or cell cycle. 
Osteosarcoma (OS) is a representative tumor associated with the 
Human Telomerase Enzyme Reverse Transcriptase (hTERT) gene, 
whose Telomere Maintenance Mechanism (TMM) includes two 
forms of Telomerase Activity (TA) and alternative lengthening 
telomere (ALT). Hitomi et al. showed that the control of hTERT 
expression includes both transcriptional and post-transcriptional 



www.journalononcology.org	 			         6

processes, both of which contribute to the occurrence of TMM 
(TA and ALT) in OS and may provide insight into the prognosis of 
patients [30]. In conclusion, both RBPs and AS link the exons of 
pre-mRNA in different arrangements, making gene expression 
patterns more complex, transcriptionally efficient, and promoting 
protein diversity. This eventually results in structurally and func-
tionally distinct mRNA and protein variants and has an important 
role in disease.

RASE associated with immune infiltration in OS

With changes in the host immune system, the functional 
components of tumor-infiltrating immune cells (TIICs) undergo 
minor changes, and TIICs have been reported to be associated 
with clinical outcomes in cancer patients [31]. Osteosarcoma 
is an immune-sensitive type of tumor, mainly infiltrated by he-
terogeneous immune cells such as neutrophils, dendritic cells, 
monocytes, mast cells, and macrophages [32-34]. Numerous 
studies have reported that TIIC subsets such as NK cells, memory 
T cells, and M1 macrophages are typically associated with good 
prognosis in osteosarcoma, whereas M2 macrophages and Treg 
cells are associated with terrible prognosis in osteosarcoma [35-
37]. Additionally, CD4+ memory T cells, CD8+ T cells, NK cells, M1 
macrophages, Treg cells, and plasma cells were identified in me-
tastatic tissues as key determinants of osteosarcoma metastasis 

[38,39], which is consistent with our results. Chen et al. found 
that patrolling mononuclear cells (PMOs) inhibited lung metasta-
sis of osteosarcoma while T follicular helper cell, monocytes, and 
resting mast cells were associated with favorable chemotherapy 
outcomes for osteosarcoma [16]. In the complex tumor ecology, 
in addition to immune cells, there are stromal cell subsets that 
can drive malignant tumor progressions, such as endothelial cells, 
fibroblasts, reactive astrocytes, and microglia. Peng et al., [40] 
explored the potential mechanism through which the predictive 
splicing factor affects the overall survival of glioblastoma (GBM) 
patients by regulating RASE, and they also found an association 
between AS and immune cell infiltration types in tumor tissues 
of different subtypes of GBM, establishing that the enrichment of 
many immune-related pathways may be caused by differences in 
the recruitment or differentiation of various immune cells in ma-
lignancies. RAS is closely related to the regulation of the immune 
microenvironment during the occurrence of tumors. Therefore, 
we studied the correlation between immune cell types and RSAE 
in osteosarcoma metastasis at the genome-wide level and ana-
lyzed their possible functions.

RASG associated with RBPs in tumors

Lipid droplet morphology is thought to be involved by the en-
doplasmic reticulum protein, which is encoded by the gene of 
BSCL2, and BSCL2 has been linked to both overall survival and 
progression-free survival in high-grade ovarian serous carcinoma 
(HGOSC) [41]. Ali et al. [42] analyzed ovarian cancer data from 
TCGA and showed that in univariate and multivariate analysis, 
the expression profile of the gene BSCL2 had a statistically signifi-
cant correlation with the survival rate of ovarian cancer patients. 
However, as the gene has been studied to a lesser extent in osteo-
sarcoma, the specific mechanism remains unknown. A transcrip-
tion factor (TF) called ZNF410, also referred to as APA-1, regulates 
the expression of genes involved in matrix remodeling during the 
senescence of fibroblasts [43]. The research on ZNF410 is lacking, 

yet, the latest cancer research reported the association of abnor-
mal expression of this gene in breast cancer with tumor stage and 
different subtypes [44]. CBWD5, also known as CBWD3, is current-
ly only reported to have copy number variation in CBWD5 in small 
cell lung cancer [45].

The blank of RBM10/20 and WIPE3 in osteosarcoma research

The expression of RBM10 can induce the apoptosis of osteo-
sarcoma and inhibit the proliferation of primary chondrocytes by 
reducing the production of Bcl-2, increasing the production of 
caspase-3 and the expression TNF-α. However, over-expression of 
Bcl-2 can inhibit osteosarcoma invasion and migration as well as 
decrease osteosarcoma colony formation and proliferation [46]. 
As one of the few heart-specific splicing factors, previous studies 
of RBM20, which belongs to the same class, have mostly concen-
trated on research in cardiomyopathy. Specific genes involved in 
sarcomere assembly, ion transport, and relaxation function have 
been shown to be regulated by RBM20. It acts on actin and tro-
pomyosin in familial cardiomyopathy, affecting striated muscle 
biomechanics. In addition, RBM20 has been implicated in fasting 
blood glucose regulation of insulin damage in cardiac tissue [47]. 
However, the role of RBM20 in osteosarcoma has not been pro-
ven so far. WIPE3 is also rarely reported in osteosarcoma and is 
currently only reported in a few cancers such as gastric cancer 
and breast cancer. Cava et al. [48] argued that with the increased 
aggressiveness of breast cancer molecular subtypes, the interac-
tion between DERBPs and DEGs is one of the essential factors for 
the future progress of breast cancer research. By analyzing the 
microarray data of gastric cancer tissue, suggesting that the ab-
normal expression of WIPF3 is connected to the survival rate of 
patients with gastric cancer, Zhou et al. [49] discovered four RBPs 
(RBPMS2, DAZ1, WIPF3, and NOVA1) which independently pre-
dicted the prognosis of gastric cancer. However, DAZ1 and WIPF3 
have not yet been reported in osteosarcoma, which indicates that 
they might be potential therapeutic targets and prognostic indica-
tors for osteosarcoma. We found that alternative splicing events 
regulated by WIPF3-BSCL2 were positively associated with plasma 
cells in metastatic osteosarcoma tissue. Nonetheless, it remains 
unclear how WIPF3 affects splicing complex formation and pre-
mRNA structure after binding to target gene sequences. In the 
future, we plan to conduct a more in-depth study on the specific 
molecular mechanism of WIPF3 regulating the alternative splicing 
of target genes.

Conclusion 

We identified a total of 547 differentially alternative splicing 
events in metastatic osteosarcoma tissues, screened the top 7 
DERBPs and associated alternative splicing events with different 
types of immune cells. Finally, analyzed their co-expression re-
lationships. Among them, the alternative splicing event ZNF410 
regulated by CYRAB has negatively correlated with T cells CD4 
memory activated, and the alternative splicing event BSCL2 re-
gulated by WIPF3 was positively correlated with plasma cells. In 
conclusion, we speculate that CRYAB and WIPF3 may affect the 
composition of immune cells by regulating gene alternative spli-
cing, thereby promoting the metastasis of osteosarcoma tissue. 
Does ZNF410 or WIPF3 affect the formation of splicing complexes 
after binding to target genes to regulate the alternative splicing 
process? And the specific molecular mechanism of ZNF410 or 
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WIPF3 regulating target gene alternative splicing needs further 
study.
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